
Microcontroller

or Processor

Multiplexer /

Switch

I/O

Expanders

LED

Blinkers

Hub

Repeater

Buffer

I/O

Expanders

Data

Converter
EEPROM LCD Driver

Temperature

Sensor

VCC

VCC VCC

VCC

RP

SCL

SDA

SCL0

SDA0

SCL1

SDA1

1SLVA704–June 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

Understanding the I2C Bus

Application Report
SLVA704–June 2015

Understanding the I2C Bus

Jonathan Valdez, Jared Becker

ABSTRACT
The I2C bus is a very popular and powerful bus used for communication between a master (or multiple
masters) and a single or multiple slave devices. Figure 1 illustrates how many different peripherals may
share a bus which is connected to a processor through only 2 wires, which is one of the largest benefits
that the I2C bus can give when compared to other interfaces.

This application note is aimed at helping users understand how the I2C bus works.

Figure 1 shows a typical I2C bus for an embedded system, where multiple slave devices are used. The
microcontroller represents the I2C master, and controls the IO expanders, various sensors, EEPROM,
ADCs/DACs, and much more. All of which are controlled with only 2 pins from the master.

Figure 1. Example I2C Bus

Trademarks

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA704

Logic

Slave or Master

RPU

V

Time

VBUS

VBUS

SDA/SCL

Logic

Slave or Master

RPU

Electrical Characteristics www.ti.com

2 SLVA704–June 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

Understanding the I2C Bus

1 Electrical Characteristics
I2C uses an open-drain/open-collector with an input buffer on the same line, which allows a single data line
to be used for bidirectional data flow.

1.1 Open-Drain for Bidirectional Communication
Open-drain refers to a type of output which can either pull the bus down to a voltage (ground, in most
cases), or "release" the bus and let it be pulled up by a pull-up resistor. In the event of the bus being
released by the master or a slave, the pull-up resistor (RPU) on the line is responsible for pulling the bus
voltage up to the power rail. Since no device may force a high on a line, this means that the bus will never
run into a communication issue where one device may try to transmit a high, and another transmits a low,
causing a short (power rail to ground). I2C requires that if a master in a multi-master environment transmits
a high, but see's that the line is low (another device is pulling it down), to halt communications because
another device is using the bus. Push-pull interfaces do not allow for this type of freedom, which is a
benefit of I2C.

Figure 2. Basic Internal Structure of SDA/SCL Line

Figure 2 shows a simplified view of the internal structure of the slave or master device on the SDA/SCL
lines, consisting of a buffer to read input data, and a pull-down FET to transmit data. A device is only able
to pull the bus line low (provide short to ground) or release the bus line (high impedance to ground) and
allow the pull-up resistor to raise the voltage. This is an important concept to realize when dealing with I2C
devices, since no device may hold the bus high. This property is what allows bidirectional communication
to take place.

1.1.1 Open-Drain Pulling Low
As described in the previous section, the Open-Drain setup may only pull a bus low, or "release" it and let
a resistor pull it high. Figure 3 shows the flow of current to pull the bus low. The logic wanting to transmit a
low will activate the pull-down FET, which will provide a short to ground, pulling the line low.

Figure 3. Pulling the Bus Low With An Open-Drain Interface

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA704

Logic

Slave or Master

RPU

V

Time

VBUS

VBUS

SDA/SCL

www.ti.com I2C Interface

3SLVA704–June 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

Understanding the I2C Bus

1.1.2 Open-Drain Releasing Bus
When the slave or master wishes to transmit a logic high, it may only release the bus by turning off the
pull-down FET. This leaves the bus floating, and the pull-up resistor will pull the voltage up to the voltage
rail, which will be interpreted as a high. Figure 4 shows the flow of current through the pull-up resistor,
which pulls the bus high.

Figure 4. Releasing the Bus With An Open-Drain Interface

2 I2C Interface

2.1 General I2C Operation
The I2C bus is a standard bidirectional interface that uses a controller, known as the master, to
communicate with slave devices. A slave may not transmit data unless it has been addressed by the
master. Each device on the I2C bus has a specific device address to differentiate between other devices
that are on the same I2C bus. Many slave devices will require configuration upon startup to set the
behavior of the device. This is typically done when the master accesses the slave's internal register maps,
which have unique register addresses. A device can have one or multiple registers where data is stored,
written, or read.

The physical I2C interface consists of the serial clock (SCL) and serial data (SDA) lines. Both SDA and
SCL lines must be connected to VCC through a pull-up resistor. The size of the pull-up resistor is
determined by the amount of capacitance on the I2C lines (for further details, refer to I2C Pull-up Resistor
Calculation (SLVA689). Data transfer may be initiated only when the bus is idle. A bus is considered idle if
both SDA and SCL lines are high after a STOP condition.

The general procedure for a master to access a slave device is the following:
1. Suppose a master wants to send data to a slave:

• Master-transmitter sends a START condition and addresses the slave-receiver
• Master-transmitter sends data to slave-receiver
• Master-transmitter terminates the transfer with a STOP condition

2. If a master wants to receive/read data from a slave:
• Master-receiver sends a START condition and addresses the slave-transmitter
• Master-receiver sends the requested register to read to slave-transmitter
• Master-receiver receives data from the slave-transmitter
• Master-receiver terminates the transfer with a STOP condition

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA704
http://www.ti.com/lit/pdf/SLVA689

SCL

SDA

START

Condition

STOP

Condition

Data Transfer

I2C Interface www.ti.com

4 SLVA704–June 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

Understanding the I2C Bus

2.1.1 START and STOP Conditions
I2C communication with this device is initiated by the master sending a START condition and terminated
by the master sending a STOP condition. A high-to-low transition on the SDA line while the SCL is high
defines a START condition. A low-to-high transition on the SDA line while the SCL is high defines a STOP
condition.

Figure 5. Example of START and STOP Condition

2.1.2 Repeated START Condition
A repeated START condition is similar to a START condition and is used in place of a back-to-back STOP
then START condition. It looks identical to a START condition, but differs from a START condition
because it happens before a STOP condition (when the bus is not idle). This is useful for when the master
wishes to start a new communication, but does not wish to let the bus go idle with the STOP condition,
which has the chance of the master losing control of the bus to another master (in multi-master
environments).

2.2 Data Validity and Byte Format
One data bit is transferred during each clock pulse of the SCL. One byte is comprised of eight bits on the
SDA line. A byte may either be a device address, register address, or data written to or read from a slave.
Data is transferred Most Significant Bit (MSB) first. Any number of data bytes can be transferred from the
master to slave between the START and STOP conditions. Data on the SDA line must remain stable
during the high phase of the clock period, as changes in the data line when the SCL is high are
interpreted as control commands (START or STOP).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA704

SCL

SDA

MSB Bit Bit Bit Bit Bit Bit LSB

Byte: 1010 1010 (0xAAh)

1 0 1 0 1 0 1 0

SDA line stable while SCL line is high

ACK

ACK

www.ti.com I2C Interface

5SLVA704–June 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

Understanding the I2C Bus

Figure 6. Example of Single Byte Data Transfer

2.3 Acknowledge (ACK) and Not Acknowledge (NACK)
Each byte of data (including the address byte) is followed by one ACK bit from the receiver. The ACK bit
allows the receiver to communicate to the transmitter that the byte was successfully received and another
byte may be sent.

Before the receiver can send an ACK, the transmitter must release the SDA line. To send an ACK bit, the
receiver shall pull down the SDA line during the low phase of the ACK/NACK-related clock period (period
9), so that the SDA line is stable low during the high phase of the ACK/NACK-related clock period. Setup
and hold times must be taken into account.

When the SDA line remains high during the ACK/NACK-related clock period, this is interpreted as a
NACK. There are several conditions that lead to the generation of a NACK:
1. The receiver is unable to receive or transmit because it is performing some real-time function and is

not ready to start communication with the master.
2. During the transfer, the receiver gets data or commands that it does not understand.
3. During the transfer, the receiver cannot receive any more data bytes.
4. A master-receiver is done reading data and indicates this to the slave through a NACK.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA704

SCL

SDA

1 2 3 4 5 6 7 8 9

NACK

Data Byte N

STOP

Condition

MSB

D7 D6 D5 D4 D3 D2 D1

LSB

D0

I2C Data www.ti.com

6 SLVA704–June 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

Understanding the I2C Bus

Figure 7. Example NACK Waveform

3 I2C Data
Data must be sent and received to or from the slave devices, but the way that this is accomplished is by
reading or writing to or from registers in the slave device.

Registers are locations in the slave's memory which contain information, whether it be the configuration
information, or some sampled data to send back to the master. The master must write information into
these registers in order to instruct the slave device to perform a task.

While it is common to have registers in I2C slaves, please note that not all slave devices will have
registers. Some devices are simple and contain only 1 register, which may be written directly to by
sending the register data immediately after the slave address, instead of addressing a register. An
example of a single-register device would be an 8-bit I2C switch, which is controlled via I2C commands.
Since it has 1 bit to enable or disable a channel, there is only 1 register needed, and the master merely
writes the register data after the slave address, skipping the register number.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA704

Read From One Register in a Device

S A6 A5 A4 A3 A2 A1 A0 0

Device (Slave) Address (7 bits)

B7 B6 B5 B4 B3 B2 B1 B0 A

Register Address N (8 bits)

A

START ACK ACK

Sr A6 A5 A4 A3 A2 A1 A0

Device (Slave) Address (7 bits)

Repeated START

1 A D7 D6 D5 D4 D3 D2 D1 D0 NA

Data Byte From Register N (8 bits)

P

NACK STOPACK

Master Controls SDA Line

Slave Controls SDA Line

R/W = 0 R/W = 1

S A6 A5 A4 A3 A2 A1 A0 0

Device (Slave) Address (7 bits)

B7 B6 B5 B4 B3 B2 B1 B0 A

Register Address N (8 bits)

D7 D6 D5 D4 D3 D2 D1 D0 A

Data Byte to Register N (8 bits)

A P

START R/W = 0 ACK ACK ACK STOP

Write to One Register in a Device

Master Controls SDA Line

Slave Controls SDA Line

www.ti.com I2C Data

7SLVA704–June 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

Understanding the I2C Bus

3.1 Writing to a Slave On The I2C Bus
To write on the I2C bus, the master will send a start condition on the bus with the slave's address, as well
as the last bit (the R/W bit) set to 0, which signifies a write. After the slave sends the acknowledge bit, the
master will then send the register address of the register it wishes to write to. The slave will acknowledge
again, letting the master know it is ready. After this, the master will start sending the register data to the
slave, until the master has sent all the data it needs to (sometimes this is only a single byte), and the
master will terminate the transmission with a STOP condition.

Figure 8 shows an example of writing a single byte to a slave register.

Figure 8. Example I2C Write to Slave Device's Register

3.2 Reading From a Slave On The I2C Bus
Reading from a slave is very similar to writing, but with some extra steps. In order to read from a slave,
the master must first instruct the slave which register it wishes to read from. This is done by the master
starting off the transmission in a similar fashion as the write, by sending the address with the R/W bit
equal to 0 (signifying a write), followed by the register address it wishes to read from. Once the slave
acknowledges this register address, the master will send a START condition again, followed by the slave
address with the R/W bit set to 1 (signifying a read). This time, the slave will acknowledge the read
request, and the master releases the SDA bus, but will continue supplying the clock to the slave. During
this part of the transaction, the master will become the master-receiver, and the slave will become the
slave-transmitter.

The master will continue sending out the clock pulses, but will release the SDA line, so that the slave can
transmit data. At the end of every byte of data, the master will send an ACK to the slave, letting the slave
know that it is ready for more data. Once the master has received the number of bytes it is expecting, it
will send a NACK, signaling to the slave to halt communications and release the bus. The master will
follow this up with a STOP condition.

Figure 9 shows an example of reading a single byte from a slave register.

Figure 9. Example I2C Read from Slave Device's Register

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA704

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Understanding the I2C Bus
	1 Electrical Characteristics
	1.1 Open-Drain for Bidirectional Communication
	1.1.1 Open-Drain Pulling Low
	1.1.2 Open-Drain Releasing Bus

	2 I2C Interface
	2.1 General I2C Operation
	2.1.1 START and STOP Conditions
	2.1.2 Repeated START Condition

	2.2 Data Validity and Byte Format
	2.3 Acknowledge (ACK) and Not Acknowledge (NACK)

	3 I2C Data
	3.1 Writing to a Slave On The I2C Bus
	3.2 Reading From a Slave On The I2C Bus

	Important Notice

